# On Uniqueness of Best Spline Approximations with Free Knots

HERBERT ARNDT

Institut für numerische und instrumentelle Mathematik, Westfälische Wilhelms-Universität, 44 Münster, West Germany

Communicated by Lothar Collatz

This paper is concerned with Chebyshev approximation by spline functions with free knots. If a zero of a Chebyshev spline function occurs at a knot, the multiplicity of the zero is suitably extended. Theorems on uniqueness on the whole approximation interval and on subintervals are stated in terms of alternation properties.

## 1. INTRODUCTION

In this paper the approximation to a real function  $f \in C[a, b]$  by Chebyshev spline functions is considered. Spline functions are defined as follows (cf. [4]): Given n + 1 positive functions  $w_i \in C^{n-i}[a, b]$ , i = 0, 1, ..., n, let

$$\phi_{l}(t, x) = \begin{cases} w_{0}(t) \int_{x}^{t} w_{1}(\xi_{1}) \int_{x}^{\xi_{1}} w_{2}(\xi_{2}) \cdots \int_{x}^{\xi_{l-1}} w_{l}(\xi_{l}) d\xi_{l} \cdots d\xi_{1}, & t \ge x, \\ 0, & t < x, \end{cases}$$
$$u_{l}(t) = \phi_{l}(t, a), \quad l = 0, 1, ..., n.$$

Then,

$$S_{n,k} = \left\{ s(t) \, \middle| \, s(t) = \sum_{i=0}^{n} a_{i} u_{i}(t) + \sum_{i=1}^{r} \sum_{j=1}^{m_{i}} b_{ij} \phi_{n-j+1}(t, y_{i}), \\ a = y_{0} < y_{1} < \cdots < y_{r+1} = b, 1 \leq m_{i} \leq n+1, \sum_{i=1}^{r} m_{i} \leq k \right\}$$

is the class  $S_{n,k}$  of Chebyshev spline functions of order *n* with the parameters  $a_k$ ,  $b_{ij}$ ,  $m_i$ ,  $y_i$  (k = 0,...,n; i = 1,...,r;  $j = 1,...,m_i$ ). In the case  $w_0(t) \equiv 1$ ,  $w_i(t) \equiv i, i = 1,...,n, S_{n,k}$  reduces to the class of polynomial spline functions with

$$\phi_l(t,x)=(t-x)_+^l.$$

118

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. According to Schumaker [4], there always exists a best approximation  $s^* \in S_{n,k}$  to  $f \in C[a, b]$ , i.e.,

$$||f - s^*|| \le ||f - s|| = \sup\{|(f - s)(t)| \mid t \in [a, b]\}$$

holds for every  $s \in S_{n,k}$ . At least one best approximation is continuous.

It is our aim to establish sufficient conditions which guarantee that best approximation is unique on the whole approximation interval or on a subinterval. As usual, these conditions will involve alternation properties.

# 2. PRELIMINARIES

Interpolation with Chebyshev spline functions (with fixed knots) leads to a linear system of equations, the determinant of which has been studied by Karlin and Ziegler [2].

Let  $T = \{t_1 \leqslant t_2 \leqslant \cdots \leqslant t_m\}$  and  $X = \{x_1 \leqslant x_2 \leqslant \cdots \leqslant x_m\}$  such that

(1) No more than n + 1 elements of T (or X) coincide.

(2) If *i* elements of *T* coincide with *j* elements of *X*, then  $i + j \le n + 2$ .

Define

$$\phi(T, X) = \phi \begin{pmatrix} t_1, ..., t_m \\ x_1, ..., x_m \end{pmatrix} = \det(\phi_n(t_i, x_j)_{i,j=1}^m)$$
(2.1)

with the following interpretation:

(a) If  $x_{i-1} < x_i = x_{i+1} = \cdots = x_{i+p} < x_{i+p+1}$ , then the (i+j)th column vector has to be replaced by  $[\phi_{n+j-p}(t_1, x_i), ..., \phi_{n+j-p}(t_m, x_i)]^T$  for j = 1, ..., p.

(b) If coincidences of elements of T occur, successive rows of (2.1) are replaced by derivatives of the previous rows.

With these conventions, the following lemma has been shown by Karlin and Ziegler [2]:

LEMMA 2.1. The determinant (2.1) is nonnegative and is strictly positive if and only if

$$t_{i-n-1} < x_i < t_i, \quad i = 1, 2, ..., m,$$
 (2.2)

where the left-hand inequality is ignored for  $i \le n + 1$ ; in the case n = 0, equality is permitted on the right-hand side of (2.2).

With Lemma 2.1, the zero structure of Chebyshev spline functions can be studied, paying attention to the fact that spline functions may vanish identically on subintervals. A zero z of  $s \in S_{n,k}$  may be counted p times  $(p \leq n)$  if the first p-1 derivatives vanish. If, in addition, z coincides with a knot of multiplicity n-p+1, then the zero may be counted even p+1 times. (Special cases are considered in [1] and [3].)

By  $B_{n,k}$  we denote the minimal deviation  $|| f - s^* ||$ . The notation  $s \in S_{n,k}(x_1, ..., x_k)$  indicates that s has the knots  $x_1 \leq x_2 \leq \cdots \leq x_k$  repeated according to their multiplicity.

LEMMA 2.2. Let  $s \in S_{n,k}(x_1, ..., x_k) \cap C[a, b]$ . If s possesses n + k + 1 zeros  $z_1 \leq z_2 \leq \cdots \leq z_{n+k+1}$  on [a, b] satisfying

$$z_i < x_i < z_{n+i+1}, \quad i = 1, ..., k,$$
 (2.3)

then s vanishes identically on [a, b].

**Proof.** If there are no zeros of multiplicity p + 1 at knots of multiplicity n - p + 1, the result follows immediately from Lemma 2.1. If there are such zeros, let  $x_q$  be the left most and assume

$$x_{q-1} < x_q = x_{q+1} = \cdots = x_{q+n-p} < x_{q+n-p+1}$$

In view of (2.3) for i = q and i = q + n - p, and considering the restrictions of s on  $[a, x_q]$  and  $[x_q, b]$ , the proof is easily done by induction.

The following lemma reduces to Lemma 2.2 in [4] provided that there are only simple zeros. If zeros at knots of multiplicity n are counted twice, the second statement is due to Braess [1].

LEMMA 2.3. Let 
$$s \in S_{n,k}(x_1, ..., x_k) \cap C[a, b]$$
.

(1) If s possesses n + k zeros  $z_1 \leq z_2 \leq \cdots \leq z_{n+k}$  and does not vanish identically between two of them, then

$$z_i < x_i < z_{n+i}, \quad i = 1, ..., k.$$
 (2.4)

(2) If s possesses n + k + 1 zeros  $z_1 \leq z_2 \leq \cdots \leq z_{n+k+1}$ , then s vanishes identically between two of them.

**Proof.** The proof proceeds by induction on k. For k = 0 the result follows from Lemma 2.2. Assume the statements proved for 0, 1,..., k - 1. If the right-hand side of (2.4) does not hold, then, in view of  $x_q \ge z_{n+q}$  for some q, there are n + q zeros of  $s \in S_{n,q-1}[a, x_q]$ , contrary to the induction hypothesis. The other case is argued similarly.

If s possesses n + k + 1 zeros but does not vanish identically between two of them, then (1) implies  $z_i < x_i < z_{n+i}$  and therefore  $z_i < x_i < z_{n+i+1}$  for i = 1, ..., k. By virtue of Lemma 2.2 we have  $s \equiv 0$  on [a, b], a contradiction to the assumptions of (2).

A function  $f \in C[a, b]$  is said to alternate *m* times on [a, b] if there exist m + 1 points  $a \leq t_1 < t_2 < \cdots < t_{m+1} \leq b$  with

$$|f(t_i)| = ||f||, \quad i = 1, ..., m + 1, \quad f(t_i) = -f(t_{i+1}), \quad i = 1, ..., m.$$

An immediate consequence of Theorem 2.2 of Braess [1] is the following theorem, which shows that under certain conditions adding further knots does not lead to a better approximation.

THEOREM 2.4. Let  $f \in C[a, b]$  and  $s \in S_{n,k} \cap C[a, b]$  have knots  $a = y_0 < y_1 < \cdots < y_{r+1} = b$ . If f - s alternates n + k + l + m + 1 times on some subinterval  $[y_p, y_q]$  where  $s \in S_{n,l}[y_p, y_q]$  holds, then s is a best approximation in  $S_{n,k+m}$  and

$$B_{n,k}=B_{n,k+1}=\cdots=B_{n,k+m}.$$

## 3. UNIQUENESS

One necessary condition for uniqueness of the best approximation, being  $B_{n,k} < B_{n,k-1}$ , has been developed by Schumaker [4]. A weaker condition is that the best approximation  $s \in S_{n,k}$  is not contained in  $S_{n,k-1}$ . However, both conditions are not sufficient as simple examples show.

The following lemma serves for the proof of uniqueness on the whole interval while the second lemma prepares a theorem on uniqueness on a subinterval.

LEMMA 3.1. Let  

$$s \in S_{n,k}(x_1, ..., x_k) \cap C[a, b], \quad s \notin S_{n,k-1}, \quad and \quad s^* \in S_{n,k} \cap C[a, b].$$
  
If  $\Delta = s - s^*$  possesses  $n + 2k + 1$  zeros  $z_1 \leq z_2 \leq \cdots \leq z_{n+2k+1}$  with  
 $z_{2i} < x_i < z_{n+2i}, \quad i = 1, ..., k,$  (3.1)

then  $\Delta$  vanishes identically on [a, b].

**Proof.** The proof proceeds by induction on k. For k = 0 the result follows from Lemma 2.2. Assume the result proved for k = 0, 1, ..., K - 1. We show it for k = K.

We can assume  $\Delta \in S_{n,2k}(y_1,...,y_{2k})$  with  $\{x_1,...,x_k\} \subset \{y_1,...,y_{2k}\}$  (if necessary we add virtual knots). Since  $\Delta$  has n + 2k + 1 zeros, Lemma 2.3 applies to assert  $\Delta \equiv 0$  on some subinterval  $[y_p, y_q]$  of [a, b].

Case 1. At first we consider the case  $x_1 < x_k$  and  $[y_p, y_q] \subset [x_1, x_k]$ . Let  $x^* \in (y_p, y_q)$ , but  $x^* \notin \{y_1, ..., y_{2k}\}$ . Then  $s \in S_{n,k_1}[a, x^*]$ ,  $s \in S_{n,k_2}[x^*, b]$ ,  $s^* \in S_{n,l_1}[a, x^*]$ , and  $s^* \in S_{n,l_2}[x^*, b]$ . The choice of  $x^*$  leads to  $k_1 < k$  and  $k_2 < k$ . Without loss of generality we can assume  $l_1 \leq k_1$ . With the zeros  $z_1, z_2, ..., z_{2k_1}$  and n + 1 zeros in  $[x_{k_1}, x^*]$ , the induction hypothesis applied to the interval  $[a, x^*]$  yields  $\Delta \equiv 0$  on  $[a, x^*]$ . Moreover, we have  $l_1 = k_1$ . Hence,  $s \notin S_{n,k-1}$  implies  $l_2 \leq k_2$ , and we conclude that  $\Delta \equiv 0$  on  $[x^*, b]$ .

Case 2. Let  $x_1 < x_k$  and assume that  $\Delta$  does not vanish identically on some subinterval of  $[x_1, x_k]$ . Then  $\Delta$  vanishes identically on  $[y_p, y_q] \subset [a, x_1]$ and/or on  $[y_r, y_s] \subset [x_k, b]$ , but does not vanish identically on some subinterval of  $[y_q, y_r]$ . Let  $m_q$  and  $m_r$  be the multiplicities of  $y_q$  and  $y_r$ , respectively. Then  $\Delta \in S_{n,2k-m_q-m_r}[y_q, y_r]$  possesses a zero of multiplicity  $n + 1 - m_i$ in  $y_i$ , i = q, r. By virtue of (3.1) there are at least 2k - (n + 1) zeros of  $\Delta$ in  $(x_1, x_k)$  (the case 2k < n + 1 is similar). Hence,  $\Delta$  possesses at least

 $n + 1 - m_a + 2k - (n + 1) + n + 1 - m_r = n + 2k - m_a - m_r + 1$ 

zeros on  $[y_q, y_r]$ . By Lemma 2.3,  $\Delta$  vanishes identically on some subinterval of  $[y_q, y_r]$ , contrary to our assumptions. Therefore Case 1 is valid.

Case 3. Let  $x_1 = x_k$ . If  $\Delta$  vanishes identically in an open neighbourhood of  $x_1$ , then  $s \notin S_{n,k-1}$  implies that  $s^*$  has a knot of multiplicity k at  $x_1 = x_k$ , too. Therefore we have  $\Delta \equiv 0$  on [a, b].

Assume that  $\Delta$  does not vanish identically in some open neighbourhood of  $x_1$ . Then the arguments of Case 2 lead to a contradiction.

Condition (3.1) cannot be weakened to

$$z_{2i-1} < x_i < z_{n+2i+1}, \quad i = 1, ..., k,$$
 (3.1\*)

as the following example shows: Let  $n \ge 1$ ,  $s(t) = \phi_n(t, x_1)$ ,  $s^*(t) = c\phi_n(t, y_1)$ with  $x_1 < y_1$ . Define  $z_1 < \cdots < z_{n+2}$  with  $z_i \in [a, x_1]$ , i = 1, ..., n + 2. Choose c sufficiently great such that  $\Delta = s - s^*$  has a zero  $z_{n+3}$  in  $(y_1, b)$ [in the case of polynomial splines it suffices to choose  $c \ge (b - x_1)^n/(b - y_1)^n$ ]. Then  $\Delta$  satisfies (3.1\*) but does not vanish identically on [a, b].

The following lemma can be shown by applying the same technique used in the proof of the previous lemma.

LEMMA 3.2. Let

 $s \in S_{n,k}(x_1, ..., x_k) \cap C[a, b], \quad s \notin S_{n,k-1}, \quad and \quad s^* \in S_{n,l} \cap C[a, b]$ 

with  $l \ge k$ . If  $\Delta = s - s^*$  possesses n + k + l + 1 zeros  $z_1 \le z_2 \le \cdots \le z_{n+k+l+1}$  with

$$z_{l-k+2i} < x_i < z_{n+2i}, \quad i = 1, ..., k,$$
 (3.2)

then there exists a  $\delta > 0$  such that  $\Delta$  vanishes identically on  $[x_1 - \delta, x_k + \delta]$ .

Now a statement on uniqueness on a subinterval is established.

THEOREM 3.3. Let  $f \in C[a, b]$  and  $s \in S_{n,k}(x_1, ..., x_k) \cap C[a, b]$  with  $s \in S_{n,l}[x_p, x_q]$  for some subinterval  $[x_p, x_q]$ . Suppose that  $s \notin S_{n,l-1}[x_p, x_q]$  and f - s alternates n + k + l + 1 times on  $[x_p, x_q]$  but does not alternate n + 2i + 1 times on any subinterval of  $[x_p, x_q]$  containing less than i + 1 knots in its interior,  $0 \leq i < l$ . If  $s^*$  is a best approximation to f in  $S_{n,k} \cap C[a, b]$ , then s and  $s^*$  coincide in an open neighbourhood of  $[x_{p+1}, x_{q-1}]$ , and s is at least r times differentiable on  $[x_{p+1}, x_{q-1}]$ ,  $r \geq (n + k - l)/2$ .

**Proof.** Since f - s alternates n + k + l + 1 times on  $[x_p, x_q]$  and  $s \in S_{n,l}[x_p, x_q]$  holds, Theorem 2.4 yields that s is a best approximation to f in  $S_{n,k}$ .

Let  $t_1 < t_2 < \cdots < t_{n+k+l+2}$  be the points of alternation of f - s on  $[x_p, x_q]$ . The assumptions concerning alternation on subintervals imply

$$t_{k-l+2i+1} < x_{p+i} < t_{n+2i}, \quad i = 1, ..., l.$$
 (3.3)

Since  $\Delta = s - s^*$  is contained in  $S_{n,k+l}[x_p, x_q]$  and f - s alternates n + k + l + 1 times on  $[x_p, x_q]$ , there exist at least n + k + l + 1 zeros  $z_1 \leq z_2 \leq \cdots \leq z_{n+k+l+1}$  of  $\Delta$  on  $[x_p, x_q]$  satisfying

$$z_{k-l+2i} < x_{p+i} < z_{n+2i}, \qquad i = 1, ..., l,$$

(where the zeros can be chosen as counted at most twice). In view of  $s \notin S_{n,l-1}[x_p, x_q]$ , Lemma 3.2 implies the existence of a  $\delta > 0$  such that  $\Delta$  vanishes identically on  $[x_{p+1} - \delta, x_{q-1} + \delta]$ .

If the multiplicities of the zeros of s in  $[x_p, x_q]$  are at most r, then s is n - r times differentiable on  $[x_p, x_q]$ . Let

$$x_p \leqslant x_{p+i_0} < x_{p+i_0+1} = \dots = x_{p+i_0+r} < x_{p+i_0+r+1} \leqslant x_q$$
.

Inserting  $i = i_0 + 1$  and  $i = i_0 + r$  in (3.3) implies

$$t_{k-l+2(i_0+r)+1} < t_{n+2(i_0+1)}$$

and

$$r<\frac{n+1+l-k}{2}.$$

Hence, s is n - r times differentiable on  $[x_q, x_p]$  with  $n - r \ge (n + k - l)/2$ .

In the particular case, when l = k, we obtain uniqueness on the whole approximation interval.

COROLLARY 3.4. Let  $f \in C[a, b]$  and  $s \in S_{n,k} \cap C[a, b]$ , but  $s \notin S_{n,k-1}$ . Suppose that f - s alternates n + 2k + 1 times on [a, b] but does not alternate n + 2i + 1 times on any subinterval containing less than i + 1 knots in its interior with  $0 \leq i < k$ . Then s is the unique best approximation to f in  $S_{n,k}$  and s is r times differentiable with  $r \geq n/2$ .

The above Corollary is similar to a theorem of Schumaker. His proof makes use of Lemma 5.2 in [4], which contradicts the following example: Let  $[a, b] = [0, 3], y_1 = 1, y_2 = 2$ , and define

$$s(t) = a_1 \phi_n(t, 1) + b_1 \phi_n(t, 2) \in S_{n,2}, \qquad a_1 \neq 0, \quad b_1 \neq 0,$$
  

$$s^*(t) = s(t) + c_1 \phi_n(t, 2) \in S_{n,2}, \qquad c_1 \neq 0.$$

If n = k = 2, then  $\Delta = s - s^* \in S_{n,k+0}$  possesses n + k + 0 + 1 zeros,  $0 < z_1 < z_2 < z_3 < 1 < z_4 < z_5 < 2$ ,

which satisfy the assumptions of the lemma, but  $\Delta$  does not vanish identically on [0, 3].

A simple example for uniqueness on a subinterval follows.

EXAMPLE 3.5. Let  $f \in C[-2, 1]$  be the polygon connecting the points

(-2; 0), (-1; 1), (-3/4; -1), (-1/2; 1), (-1/4; -1), (1/4; 65/64), (1/2; -7/8), (3/4; 91/64), (1; 0)(see Figure 1),



FIGURE 1

and consider the approximation to f in  $S_{3,2}$ . Define

$$s(t) = -(t+1)^3 + (t+1)^3_+ + (t-0)^3_+ \in S_{3,2}.$$

f - s alternates n + k + l + 1 times on [-1, 1] (with n = 3, k = 2, l = 1) and n times on [-1, 0] and on [0, 1]. Hence, by Theorem 2.4, the spline s is a best approximation to f in  $S_{n,k}$ . By Theorem 3.3 the knot 0 is uniquely determined and s is contained in  $C^2[-1, 1]$ . Obviously we have no uniqueness on the whole interval.

I would like to thank Prof. D. Braess and Prof. H. Werner for their guidance and for their advice for improvements.

#### REFERENCES

- D. BRAESS, Chebyshev Approximation by Spline Functions with Free Knots, Numer. Math. 17 (1971), 357-366.
- 2. S. KARLIN AND Z. ZIEGLER, Chebyshevian Spline Functions, SIAM J. Numer. Anal. 3 (1966), 514-543.
- 3. S. KARLIN AND L. SCHUMAKER, The Fundamental Theorem of Algebra for Tschebycheffian Monosplines, J. Anal. Math. 20 (1967), 233-270.
- L. SCHUMAKER, Uniform Approximation by Chebyshev Spline Functions, II: Free Knots, SIAM J. Numer. Anal. 5 (1968), 647–656.