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This paper is concerned with Chebyshev approximation by spline functions
with free knots. If a zero of a Chebyshev spline function occurs at a knot, the
multiplicity of the zero is suitably extended. Theorems on uniqueness on the
whole approximation interval and on subintervals are stated in terms of alterna
tion properties.

1. INTRODUCTION

In this paper the approximation to a real function! E qa, b] by Chebyshev
spline functions is considered. Spline functions are defined as follows
(cf. [4]): Given n + 1 positive functions Wi E en-ira, b], i = 0, 1,... , n, let

¢Jz(t, x) = ~ wo(t) J
x

t

W1(~1) {l W2(~2) ... {l-l wMz) d~z ... d~l ,

(0,

uz(t) = ¢Jz(t, a), 1= 0, 1'00" n.

t ;;?: x,

t < x,

Then,

Sn.k = lS(t) Is(t) = ~o atut(t) + t1 %1 bij¢Jn-i+1(t, Yt),

a = Yo < Y1 < '" < Yr+1 = b, 1 ~ mt ~ n + 1, ~1 mt ~ k}

is the class Sn,k of Chebyshev spline functions of order n with the parameters
ak, bij, mi , Yi (k = 0'00" n; i = 1,... , r; j = 1,..., mi)' In the case wo(t) = 1,
Wi(t) = i, i = 1'00" n, Sn,k reduces to the class of polynomial spline functions
with

¢J/(t, x) = (t - x)~ .
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According to Schumaker [4], there always exists a best approximation
s* ESn.k tofE C[a, b], i.e.,

Ilf - s* II ~ Ilf - s II = sup{IU - s)(t)11 t E [a, b]}

holds for every s E' Sn.k . At least one best approximation is continuous.
It is our aim to establish sufficient conditions which guarantee that best

approximation is unique on the whole approximation interval or on a sub
interval. As usual, these conditions will involve alternation properties.

2. PRELIMINARIES

Interpolation with Chebyshev spline functions (with fixed knots) leads to
a linear system of equations, the determinant of which has been studied by
Karlin and Ziegler [2].

Let T = {ti ~ t2 ~ ... ~ tm} and X = {Xl ~ X 2 < ... < Xm} such that

(1) No more than n + 1 elements of T (or X) coincide.

(2) If i elements of T coincide with j elements of X, then i + j ~ n + 2.

Define

with the following interpretation:

(a) If Xi-I < Xi = XHI = ... = XHv < Xi+v+I , then the (i + j)th column
vector has to be replaced by [epn+j-v(tl , Xi),"" epn+j-v(tm , Xi)]T for j = 1,..., p.

(b) If coincidences of elements of T occur, successive rows of (2.1) are
replaced by derivatives of the previous rows.

With these conventions, the following lemma has been shown by Karlin
and Ziegler [2]:

LEMMA 2.1. The determinant (2.1) is nonnegative and is strictly positive
if and only if

i = 1,2,... , m, (2.2)

where the left-hand inequality is ignored for i < n + 1; in the case n = 0,
equality is permitted on the right-hand side of (2.2).

With Lemma 2.1, the zero structure of Chebyshev spline functions can
be studied, paying attention to the fact that spline functions may vanish
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identically on subintervals. A zero Z of s E Sn.k may be counted p times
(p ~ n) if the first p - 1 derivatives vanish. If, in addition, Z coincides with
a knot of multiplicity n - p + I, then the zero may be counted even p + 1
times. (Special cases are considered in [I] and [3].)

By Bn .k we denote the minimal deviation II f - s* II. The notation
s E Sn.k(Xl ,... , Xk) indicates that s has the knots Xl ~ X2~ .. , ~ Xk repeated
according to their multiplicity.

LEMMA 2.2. Let s E Sn.ixl ,... , Xk) () e[a, b]. If s possesses n + k + I
zeros Zl ~ Z2 ~ ... ~ zn+k+l on [a, b] satisfying

Zi < Xi < Zn+i+l , i = I,..., k, (2.3)

then s vanishes identically on [a, b].

Proof If there are no zeros of multiplicity p + I at knots of multiplicity
n - p + 1, the result follows immediately from Lemma 2.1. If there are
such zeros, let Xq be the left most and assume

Xq- l < Xq = Xq+l = ... = Xq+n-2> < Xq+n-2>+l .

In view of (2.3) for i = q and i = q + n - p, and considering the restrictions
of s on [a, xq ] and [xq , b], the proof is easily done by induction. I

The following lemma reduces to Lemma 2.2 in [4] provided that there are
only simple zeros. If zeros at knots of multiplicity n are counted twice, the
second statement is due to Braess [I].

LEMMA 2.3. Let s E Sn.k(Xl ,... , xk) () C[q, b].

(I) If s possesses n + k zeros Zl ~ Z2 ~ ... ~ Zn+k and does not vanish
identically between two of them, then

Zi < Xi < Zn+i , i = I,... , k. (2.4)

(2) Ifs possesses n + k + I zeros Zl ~ Z2 ~ ... ~ Zn+k+l , then s vanishes
identically between two of them.

Proof The proof proceeds by induction on k. For k = 0 the result
follows from Lemma 2.2. Assume the statements proved for 0, I, ..., k - 1.
If the right-hand side of (2.4) does not hold, then, in view of Xq ;? Zn+q for
some q, there are n + q zeros of s E Sn.q_l[a, xq], contrary to the induction
hypothesis. The other case is argued similarly.

If s possesses n + k + 1 zeros but does not vanish identically between
two of them, then (I) implies Zi < Xi < Zn+i and therefore Zi < Xi < Zn+i+l
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for i = 1,... , k. By virtue of Lemma 2.2 we have s == 0 on [a, b], a contra
diction to the assumptions of (2). I

A function IE C[a, b] is said to alternate m times on [a, b] if there exist
m + 1 points a ,:;; tl < t2 < ... < tm+l ,:;; b with

i = 1,... , m + 1, f(t;) = -f(ti+l)' i = 1,... , m.

An immediate consequence of Theorem 2.2 of Braess [1] is the following
theorem, which shows that under certain conditions adding further knots
does not lead to a better approximation.

THEOREM 2.4. Let IE C[a, b] and s ESn.k n C[a, b] have knots a = Yo <
Yl < ... < Yr+l = b. If1- s alternates n + k + I + m + 1 times on some
subinterval [y:P , Yq] where s E Sn,I[Y:p , Yq] holds, then s is a best approximation
in Sn,k+m and

Bn,k = Bn,k+l = ... = Bn,k+m .

3. UNIQUENESS

One necessary condition for uniqueness of the best approximation, being
Bn,k < Bn,k-l , has been developed by Schumaker [4]. A weaker condition
is that the best approximation s E Sn,k is not contained in Sn,k-l' However,
both conditions are not sufficient as simple examples show.

The following lemma serves for the proof of uniqueness on the whole
interval while the second lemma prepares a theorem on uniqueness on a
subinterval.

LEMMA 3.1. Let

S E Sn,k(Xl ,... , xk) n C[a, b], s 1= Sn,k-l , and s* E Sn,k n era, b].

If L1 = s - s* possesses n + 2k + 1 zeros Zl ,:;; Z2 ,:;; ... ,:;; Zn+2k+l with

i = 1,... , k, (3.1)

then L1 vanishes identically on [a, b].

Proof The proof proceeds by induction on k. For k = 0 the result
follows from Lemma 2.2. Assume the result proved for k = 0, 1,..., K - 1.
We show it for k = K.

We can assume L1 E Sn,2k(Yl ,... , Y2k) with {Xl"'" Xk} C {Yl ,..., Y2k} (if
necessary we add virtual knots). Since L1 has n + 2k + 1 zeros, Lemma 2.3
applies to assert L1 == 0 on some subinterval [Yp, Yq] of [a, b].
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Case 1. At first we consider the case Xl < Xk and [yp, Yq] C [Xl' xd.
Let x* E (yP' Yq), but x* EHYI ,... , Y2k}' Then s E Sn.kJa, x*], S E Sn.kJX*, b],
s* E Sn.l

1
[a, x*], and s* E Sn,lJx*, b]. The choice of x* leads to k l < k and

k z < k. Without loss of generality we can assume 11 ~ k l . With the zeros
Zl , Z2 ,... , Z2k and n + 1 zeros in [Xk ,x*], the induction hypothesis applied

1 1

to the interval [a, x*] yields L1 ~ 0 on [a, x*]. Moreover, we have 11 = k l .
Hence, s ¢ Sn.k-l implies 12~ k2 , and we conclude that L1 = 0 on [x*, b].

Case 2. Let Xl < Xk and assume that L1 does not vanish identically on
some subinterval of [Xl' Xk]. Then L1 vanishes identically on [yP ,Yq] C [a, Xl]
and/or on [Yr, Ys] C [xk , b], but does not vanish identically on some sub
interval of [Yq ,Yr]' Let rnq and rnr be the multiplicities of Yq and Yr , respec
tively. Then L1 E Sn.2k-mq-mJYq ,Yr] possesses a zero of multiplicity n + 1 - rni
in Yi, i = q, r. By virtue of (3.1) there are at least 2k - (n + 1) zeros of L1
in (Xl' Xk) (the case 2k < n + 1 is similar). Hence, L1 possesses at least

n + 1 - rnq + 2k - (n + 1) + n + I - rnr = n + 2k - rnq - rnr + 1

zeros on [Yq ,Yr]' By Lemma 2.3, L1 vanishes identically on some subinterval
of [Yq ,Yr], contrary to our assumptions. Therefore Case 1 is valid.

Case 3. Let Xl = Xk . If L1 vanishes identically in an open neighbourhood
of Xl , then s ¢ Sn.k-l implies that s* has a knot of multiplicity k at Xl = Xk ,
too. Therefore we have L1 ~ 0 on [a, b].

Assume that L1 does not vanish identically in some open neighbourhood
of Xl . Then the arguments of Case 2 lead to a contradiction. I

Condition (3.1) cannot be weakened to

Z2i-l < Xi < Zn+Zi+1 , i = 1,... , k, (3.1 *)

as the following example shows: Let n ~ 1, s(t) = ePn(t, Xl), s*(t) = cePn(t, Yl)
with Xl < Yl. Define Zl < ... < Zn+2 with Zi E [a, Xl], i = 1,... , n + 2.
Choose c sufficiently great such that L1 = s - s* has a zero Zn+3 in (Yl , b)
[in the case of polynomial splines it suffices to choose c ~ (b - xl)n /(b - Yl)n].
Then L1 satisfies (3.1 *) but does not vanish identically on [a, b].

The following lemma can be shown by applying the same technique used
in the proof of the previous lemma.

LEMMA 3.2. Let

s ¢ Sn.k-l , and s* ESn,l n qa, b]
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with I ~ k. If LI = s - s* possesses n + k + I + 1 zeros Zl :( Z2 :( ... :(
Zn+k+l+l with

ZI-k+2i < Xi < Zn+2i , i = 1,... , k, (3.2)

then there exists a 8 > 0 such that LI vanishes identically on [Xl - 8, Xk + 8].

Now a statement on uniqueness on a subinterval is established.

THEOREM 3.3. Let fE C[a, b] and s E Sn.ixl ,... , Xk) n C[a, b] with
s E Sn.I[Xp , xq ] lor some subinterval [x p , xq ]. Suppose that s f/= Sn.l-l[Xp , xq ]

and1- s alternates n + k + I + 1 times on [xp , xq ] but does not alternate
n + 2i + 1 times on any subinterval of [x p ,xq ] containing less than i + 1
knots in its interior, 0:( i < l. If s* is a best approximation to I in
Sn.k n C[a, b], then sand s* coincide in an open neighbourhood of [Xp+l , xq - l ],
and s is at least r times differentiable on [xP+1 , xq - l ], r ~ (n + k - 1)/2.

Proof Since f - s alternates n + k + I + 1 times on [xp , xq ] and
s E Sn.I[Xp , xq ] holds, Theorem 2.4 yields that s is a best approximation to I
in Sn.k'

Let tl < t2 < ... < tn+k+1+2 be the points of alternation of f - s on
[x p , x q ]. The assumptions concerning alternation on subintervals imply

tk-l+2i+l < Xp+i < tn+2i , i = 1,... , I. (3.3)

Since LI = s - s* is contained in Sn.k+l[X p , xq ] and 1- s alternates
n + k + I + 1 times on [x p , x q ], there exist at least n + k + I + 1 zeros
Zl :( Z2 :( ... :( Zn+k+l+l of LI on [x p , x q ] satisfying

i = 1,... , I,

(where the zeros can be chosen as counted at most twice). In view of
s f/= Sn.l-l[X p , xq ], Lemma 3.2 implies the existence of a 8 > 0 such that LI
vanishes identically on [xP+l - 0, X q - l + 0].

If the multiplicities of the zeros of s in [x p , x q ] are at most r, then s is
n - r times differentiable on [x p , xq ]. Let

Inserting i = io + 1 and i = io + r in (3.3) implies

and
n+l+l-k

r < 2 .

Hence, sis n - r times differentiable on [xq , x p ] with n - r :;;: (n + k -/)/2. I
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In the particular case, when I = k, we obtain uniqueness on the whole
approximation interval.

COROLLARY 3.4. Let fE C[a, b] and s ESn,k n C[a, b], but s 1: Sn,k-l'
Suppose thatf - s alternates n + 2k + 1 times on [a, b] but does not alternate
n + 2i + 1 times on any subinterval containing less than i + 1 knots in its
interior with 0 ~ i < k. Then s is the unique best approximation to f in Sn,k
and s is r times differentiable with r > n/2.

The above Corollary is similar to a theorem of Schumaker. His proof
makes use of Lemma 5.2 in [4], which contradicts the following example:
Let [a, b] = [0,3], Y1 = 1, Y2 = 2, and define

s(t) = al rpn(t, 1) + bl rpn(t, 2) E Sn,2 , al oF 0, bl oF 0,

s*(t) = s(t) + C1rpn(t, 2) E Sn.2 , C1 oF O.

If n = k = 2, then LI = s - s* ESn,k+o possesses n + k + 0 + 1 zeros,

o < Zl < Z2 < Za < 1 < Z4 < Zs < 2,

which satisfy the assumptions of the lemma, but LI does not vanish identically
on [0,3].

A simple example for uniqueness on a subinterval follows.

EXAMPLE 3.5. LetfE C[-2, 1] be the polygon connecting the points

(-2;0), (-1;1), (-3/4;-1), (-1/2;1), (-1/4;-1),

(1/4; 65/64), (1/2; -7/8), (3/4; 91/64), (1; 0)

(see Figure 1),

FIGURE 1
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and consider the approximation to f in S3.2 . Define

125

8(1) = -(1 + 1)3 + (1 + 1)~ + (1 - O)~ ES3.2 •

f - 8 alternates n + k + I + 1 times on [-1, 1] (with n = 3, k = 2, I = 1)
and n times on [-1,0] and on [0, 1]. Hence, by Theorem 2.4, the spline 8

is a best approximation to fin Sn.k . By Theorem 3.3 the knot 0 is uniquely
determined and 8 is contained in C 2[ -1, 1]. Obviously we have no uniqueness
on the whole interval.

I would like to thank Prof. D. Braess and Prof. H. Werner for their
guidance and for their advice for improvements.
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